Tăng quỹ 15 tháng 9 2024 – 1 tháng 10 2024 Về việc thu tiền

Mathematics For Machine Learning

Mathematics For Machine Learning

Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
5.0 / 5.0
0 comments
Bạn thích cuốn sách này tới mức nào?
Chất lượng của file scan thế nào?
Xin download sách để đánh giá chất lượng sách
Chất lượng của file tải xuống thế nào?
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
>> https://mml-book.github.io/book/mml-book.pdf (Draft)
https://mml-book.github.io/book/mml-book_printed.pdf
https://github.com/mml-book/mml-book.github.io (Source Code)
https://sml-group.cc/links/
Năm:
2019
Nhà xuát bản:
Cambridge University Press
Ngôn ngữ:
english
Trang:
398
ISBN 10:
110845514X
ISBN 13:
9781108470049
File:
PDF, 16.29 MB
IPFS:
CID , CID Blake2b
english, 2019
Đọc online
Hoàn thành chuyển đổi thành trong
Chuyển đổi thành không thành công

Từ khóa thường sử dụng nhất